National Journal of Physiology, Pharmacy and Pharmacology

RESEARCH ARTICLE

Estimation of aerobic fitness levels and its determinants among the school going undernourished Indian children – A field-based study

Rajesh Jeniton Fernando¹, Maria Pauline², Tinku Thomas³, Mario Vaz²

¹Department of Physiology, Pondicherry Institute of Medical Sciences, Kalapet, Pondicherry, India, ²Department of Physiology, St. Johns National Academy of Health Sciences, Bengaluru, Karnataka, India, ³Division of Epidemiology and Biostatistics, St. Johns Research Institute, Bengaluru, Karnataka, India

Correspondence to: Rajesh Jeniton Fernando, E-mail: oshonrajesh@yahoo.com

Received: April 18, 2020; **Accepted:** May 06, 2020

ABSTRACT

Background: Higher aerobic fitness in children has many physical and cognitive health benefits and can track into adulthood preventing non-communicable diseases later in life. Data on the levels of aerobic fitness among Indian undernourished children are sparse. **Aims and Objectives:** The aim of the present study is to perform a field-based study to estimate the levels of aerobic fitness and its determinants among the undernourished Indian children. **Materials and Methods:** Three hundred clinically healthy children, 50% boys, 7–10.5 years between the body mass index (BMI) Z score of -3 and 0 were recruited. Their anthropometry, lung function, handgrip strength were determined, and their physical activity levels were ascertained. Their aerobic fitness was estimated using 20-m multistage shuttle run test (20-mMSRT) and modified Harvard's step test (MHST). **Results:** The estimated aerobic fitness levels were 32.25 ± 4.21 and 37.29 ± 5.96 (ml/kg/min) using 20-mMSRT and MHST, respectively. Body composition (fat-free mass), nutritional level (BMI Z scores), and hemoglobin explained 37% and 44% of the variance in whole-body aerobic fitness (ml/min) using 20-mMSRT and MHST, respectively. Gender difference in the predicted aerobic fitness was not apparent in this undernourished group of children. BMI Z scores were positively correlated with the whole-body aerobic fitness among undernourished Indian children. **Conclusion:** The estimated levels of aerobic fitness among the Indian undernourished children were found to be low for their age. Improvement in nutrition can positively influence on whole-body aerobic fitness among this group of undernourished children.

KEY WORDS: Aerobic Fitness; Body Composition; Children; Lung Function; Nutrition; Physical Activity Levels

INTRODUCTION

Aerobic fitness or cardiorespiratory fitness (CRF) refers to the maximum ability of the circulatory, respiratory, and muscular system to supply oxygen to sustain exercise until

Access this article online				
Website: www.njppp.com	Quick Response code			
DOI: 10.5455/njppp.2020.10.04093202006052020				

exhaustion and to eliminate fatigue products after supplying fuel.^[1] Higher aerobic fitness prevents against insulin resistance, higher systolic blood pressure, and dyslipidemia in children which are risk factors of cardiovascular disease later in adults.^[2] Children with higher aerobic fitness also have better cognitive abilities^[3] and a greater hippocampal volume.^[4] Hence, higher aerobic fitness has both physical and mental health benefits in children.

In India with a population of 1.3 billion non-communicable diseases (NCDs) accounts for 60% (5.86 million) of all-cause mortality. WHO world health statistics report 2017 estimates that a reduction of 2% of national-level NCD death rate in

National Journal of Physiology, Pharmacy and Pharmacology Online 2020. © 2020 Rajesh Jeniton Fernando, et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creative commons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

India over the next 10 years would result in an economic gain of 15 billion dollars. These NCDs are partially programed in early childhood (critical period), even in-utero based on the fetal origin of adult diseases (- Barker's hypothesis), and due to epigenetic phenomenon called "programming." [6] Hence, poor nutrition during intrauterine and early life is an early marker of NCDs in later life.[7] The Indian National Family Health Survey of 2015–2016 showed that 36% of children under age of 5 are underweight compared to the WHO global standards and 38% of them are stunted. Hence, a sizable proportion of Indian children are undernourished and therefore are at risk for future NCDs. Childhood aerobic fitness (CRF) can track into adulthood[8,9] and higher levels of CRF in adults prevent the risk of NCDs and mortality.^[10] It is, therefore, important to improve aerobic fitness among the undernourished children for their immediate and future health benefits. Essential to this is to document the levels of aerobic fitness among them. Direct measurement of inspired and expired gas while exercising is the gold standard technique to measure aerobic fitness.[11] They are, however, difficult to administer in the large group. One of the places where we can easily administer an aerobic fitness test in large groups is school. Hence, we used two field-based tests, which could be performed at school, to estimate aerobic fitness which are reasonably reliable and valid in the age group of children from 6 to 10 years. [12-14] Although the determinants of aerobic fitness are partially explained in children, they are all performed in normal nourished children.[15] The gender difference in aerobic fitness is small yet apparent among children^[16] and even evident in predicted aerobic fitness using field-based study.[14] However, gender difference in aerobic fitness among the nutritionally challenged children is not clearly documented. Hence, the aim of this present study is to evaluate the levels of the aerobic fitness among the clinically healthy yet nutritionally compromised school going Indian children and to elucidate its determinants and gender differences.

MATERIALS AND METHODS

Ethical clearance was obtained from the institutional ethics committee Ref no: IERB 1/303/08. The children were briefed in detail about the study and gave their assent in addition to written parental or legal guardian consent. Their nutritional status was assessed using the body mass index (BMI) Z score based on the WHO standard charts.[17] Children within the BMI Z score of -3 to 0 were included in the study. Children from 1st to 6th grade, in the age group of 7-10.5 years, from three different schools in the urban districts of Bengaluru, India, were randomly selected for this study (eligible n = 1155; screened n = 379; enrolled n = 300). Their age was confirmed from the school registry. Equal number of boys and girls were enrolled (150 boys and 150 girls). The children belonged to three socioeconomic groups (i.e., upper-lower, 236; lowermiddle, 56; and upper-middle, 8) based on the modified Kuppuswamy scale.[18] Children who were apparently healthy

over the past 3 months before the study, as reported by the parents or guardians, were examined by the study physician for any cardiovascular, respiratory, and musculoskeletal disorders, which could refrain them from performing the tests. After the physical examination, anthropometric parameters were measure by trained research assistants. Height was measured to the nearest 0.1 cm, standing barefoot with heels, buttocks, and back touching the custom made calibrated stadiometer and head in Frankfurt plane. Weight was measured to the nearest 0.1 kg with school uniforms, standing barefoot using a calibrated digital weighing scale (Salter-9016, Kent, U.K). BMI Z scores for the age of the children were calculated using the WHO standard charts.[17] Skin-fold thickness and midarm circumference (MAC) were performed by well-trained nutritionist. Triceps and calf skin-fold thickness of the children were measured using a standardized skinfold caliper to the nearest 0.2 mm (Holtain Ltd., Crymych, UK). The MAC was measured using a non-stretchable tape to the nearest 0.1 cm, midway between the acromion and the olecranon process, while the subject was standing with the elbow flexed at 90°. The body fat percentage was calculated using gender-specific prediction equations.^[19] The fat mass and fat-free mass (FFM) were calculated using the fat percentage and body mass. Lung function test (LFT) was performed while the children were standing using a calibrated mobile spirometer (Micro GP, Spirometer, Micro Medical Ltd., U.K) by the study physicians. Grip strength was assessed, after adjusting the grip width to comfortable level for each child, three times and the best of the readings was noted in both non-dominant and dominant hand, using the Jamar hydraulic hand dynamometer (SI instruments, Hilton, Australia). Since arm length was not measured, height was used for the standardization of grip strength. Following the anthropometry, the LFTs, and the handgrip strength measurements, blood was drawn from the anterior cubital vein and the hemoglobin (Hb) levels were asserted using spectrophotometer measurement of cyanmethemoglobin on the ABX Pentra 60 C+ (Horiba Medica) within 4 h of collection. After confirming the Hb levels of the children to be more than 8 gm%, they were administered with a modified physical activity questionnaire, developed by our research team before this study, [20] for the estimation of physical activity levels (PAL) among children. Activities with metabolic equivalent MET >3 were considered as moderate to vigorous physical activity (MVPA).[21] After these preliminary measurements, the aerobic fitness was estimated using the 20-m multistage shuttle run test (20-mMSRT) and the modified Harvard's step test (MHST)[12] on two separate days on their respective school grounds with 48 hours rest in between the tests.

20-mMSRT

The participants ran back and forth around two cones kept 19 m apart, completing one 20 m shuttle. They must touch the 20-m line at the same time that a sound signal is emitted by a pre-recorded tape. The pace of the signal increased by 0.5 km/h every minute, starting with an initial speed of

4 km/h. There were two lines marked (markers) 1 m from the cones making them 17 m apart. The participant ran until exhaustion or until they were unable to cross two consecutive markers along with the pace. The speed of the last stage and the age of the child were used to estimate the aerobic fitness level.

$$VO_{2peak1} = 31.025 + (3.328 \times \text{speed}) - (3.248 \times \text{age})$$

 $(\text{ml/kg/min})^{[12]}$

The test was administered in groups of three to five to maximize the effort by the participants, since the end of the test is effort dependent, and to motivate the children. The test was supervised by trained personnel to maintain a standardized protocol.

MHST

The participants claimed on a platform (height -30.48 cm) at the rate of 22 steps per minute for 3 min paced using a metronome. The immediate radial arterial pulse was manually recorded, within 5 s of the cessation of test, for 15 s. The aerobic fitness was estimated using the step height, stepping rate, age of the child, and observed heart rate at the end of the test.

VO2=
$$(2.2 \times \text{ stepping rate}) + (2.4 \times \text{ step height} \times \text{ stepping rate}) + 3.4$$

$$\begin{aligned} &HRmax = &220\text{-age} \\ &VO_{2peak2} = &VO2 \times HRmax/HR \ observed \ (ml/kg/min)^{[12]} \end{aligned}$$

This study used data from a double-blinded, placebocontrolled, and randomized trial that examined the impact of multiple micronutrient supplementation on physical performance in school-going children in Bengaluru, Karnataka, India.^[22]

Statistical Analysis

The data are expressed as means with standard deviations. Independent sample "t-test" was performed to examine

the gender difference in anthropometric parameters, LFTs, handgrip strength, and the aerobic capacity (assessed by 20mMSRT [VO $_{\rm 2peak1}$] and MHST [VO $_{\rm 2peak2}$]). The association of gender with involvement in MVPA was analyzed using χ^2 test. The factors associated with VO $_{\rm 2peak1}$ and VO $_{\rm 2peak2}$ were identified using separate simple followed by multiple linear regression analyses. Age, lung function parameters, anthropometry, body composition, MVPA levels, Hb levels, and forearm muscle strength apart from gender were considered as predictors in regression analyses.

RESULTS

The descriptive statistics of the study population are given in Table 1. Age, weight, and Hb levels were comparable between boys and girls. Boys were taller and had lesser MAC than girls though statistically insignificant. Boys had a significantly higher FFM (P < 0.001) and a lower fat percentage of about 50% (P < 0.001) when compared to girls. Boys had a significantly lower BMI Z scores for their age than girls (-1.46 ± 0.86 vs. -1.04 ± 84 , P < 0.001). Within the similar BMI Z scores, boys had conceivably even greater difference (60%) in FFM compared to girls ($\beta = 1.6$, P < 0.001).

Table 2 summarizes the LFTs, PALs, and local muscle strength, measured as handgrip strength. All the measured lung function parameters were significantly higher in boys than in girls. Forced expiratory volume (FEV₁) was approximately 9% higher while forced vital capacity (FVC) and peak expiratory flow rate (PEFR) were 10% and 7% higher, respectively, in boys than girls. The reported habitual physical activities were comparable between the genders. However, the proportion of boys reported to have engaged in MVPA was higher than girls (88 vs. 36, P < 0.001). Boys had significantly higher handgrip strength (P < 0.001) both in the dominant and non-dominant hand, and it remained so even after standardizing for height (P < 0.001).

Table 3 summarizes the gender difference in aerobic fitness. The whole-body aerobic fitness and relative to the body weight

Table 1: Descriptive statistics of the study population						
Variables	Pooled (<i>n</i> =300)	Boys (n=150)	Girls (n=150)	<i>P</i> -value		
Age (years)	8.6±1.0	8.7±1.0	8.6±1.0	0.46		
Height (cm)	122.6±6.5	123.2±5.8	121.3±7.0	0.09		
Weight (kg)	21.5±3.2	21.4±2.8	21.5±3.5	0.93		
Fat percentage (%)	13.1±3.5	10.6±2.1	15.6±2.7	< 0.001		
FFM (kg)	18.7±2.5	19.2±2.4	18.1±2.6	< 0.001		
MAC (cm)	16.8±1.5	16.6±1.5	17.0±1.5	0.06		
BMI Z score for age	-1.25 ± 0.88	-1.46 ± 0.86	-1.04 ± 0.84	< 0.001		
Hb (g/dl)	12.8 ± 9.1	12.9±9.7	$12.8 \pm 0.8.4$	0.49		

Data expressed as mean \pm standard deviation, P value obtained from Student's "t-test" between boys and girls, FFM: Fat-free mass, MAC: Mid arm circumference, Hb: Hemoglobin. BMI: Body mass index

Table 2: Gender difference in lung function tests, physical activity levels, and handgrip strength Pooled (*n*=300) Boys (n=150)Variables Girls (n=150)P-value FEV, (L) 1.05 ± 0.24 1.09 ± 0.22 1.00 ± 0.25 0.001 FVC (L) 1.14 ± 0.30 1.20 ± 0.32 1.09 ± 0.28 0.003 0.003 PEFR (L/min) 180.3 ± 36.0 186.3 ± 36.6 174.3±34.4 10724±1830 10617±1308 10823±2208 0.51 PAL (met min/week) Number of children reported to have involved in moderate to vigorous 126 88 38 < 0.001# physical activity (MET >3)*a 9.6±3.7 10.4 ± 3.6 8.8±3.5 < 0.001 Dominant hand muscle strength (kg) Non-dominant hand muscle strength (kg) 8.6±3.4 9.3±3.7 7.8±3.2 < 0.001

Data expressed as mean±standard deviation, P value obtained from Student's "t-test" between boys and girls, *Data expressed as number of children who reported to involved in moderate to vigorous physical activity. ^aReport obtained from total 295 children (149 boys and 146 girls), ^aP-value for χ^2 test of association between gender and number of children reported to have involved in moderate to vigorous physical activity. FEV₁: Forced expiratory volume in 1st s, FVC: Forced vital capacity, PEFR: Peak expiratory flow rate. PAL: Physical activity level

Table 3: Gender differences in aerobic fitness and whole-body endurance						
Variables	Pooled (<i>n</i> =300)	Boys (n=150)	Girls (n=150)	<i>P</i> -value		
VO _{2peak1} (ml/kg/min)#	32.25±4.21	32.51±4.43	32.00±3.98	0.29		
VO _{2peak2} (ml/kg/min)*	37.21±5.39	37.65±5.17	36.77 ± 5.59	0.16		
Whole body VO _{2peak1} (ml/min)#	687.4±97.4	693.3±98.9	681.6 ± 95.7	0.29		
Whole body VO _{2peak2} (ml/min)*	800.8±162.9	810.0±154.7	791.5±170.8	0.32		

Data expressed as mean \pm standard deviation, P value obtained from Student's "t-test" between boys and girls. "tO $_{2peak,l}$ — Aerobic fitness predicted from 20-meter multistage shuttle run test (20-mMSRT). *tO $_{2peak,l}$ — Aerobic fitness predicted from modified Harvard's step test (MHST)

predicted using 20-mMSRT and MHST did not show gender differences using Student's "t-test." Whole-body aerobic fitness estimated using 20-mMSRT (r = 0.48, P < 0.001) and MHST (r = 0.28, P = 0.001) were positively correlated with BMI Z scores. Multiple linear regression analysis indicated that FFM, BMI Z score, and Hb concentration explained 37% and 44% of the variance in whole-body aerobic fitness predicted using 20-mMSRT and MHST, respectively.

DISCUSSION

The nutritional status of the study children was determined by BMI Z scores using WHO standard charts^[23] and its mean value was less than zero. Hence, our study participants were predominantly undernourished; however, there could be well nourished yet small-sized children. Our study estimated the levels of aerobic fitness among these undernourished Indian children the data of which is scarce in literature. We have performed a maximal effort test, 20-mMSRT^[24] and a submaximal test, step test^[25] to estimate the levels of aerobic fitness, which are validated and reliable for field study among children. The absolute mean value of the aerobic fitness predicted using 20-mMSRT was found to be lower for age among the undernourished children (32.25 \pm 4.21 vs. $48.7 \pm 4.7 \text{ ml/kg/min}$) compared to their well-nourished counterparts.[14] Similarly, MHST also predicted a lesser mean value of aerobic fitness among the pooled data (37.21 \pm 5.39).

Boys performed better than girls in CRF in field-based studies among the well-nourished prepubertal children.^[26] Direct

measure of aerobic fitness among the prepubertal children elucidated that FFM[27,28] and the difference in muscle fiber type between boys and girls^[29] as the primary determinant of gender difference in CRF. Among our study children, despite boys having greater levels of FFM compared to girls, the gender difference was not apparent in the estimated levels of CRF (ml/kg/min). This could be due to the limitation that aerobic fitness and body composition were estimated rather than measured in our study. Furthermore, boys had significantly lower BMI Z scores compared to girls and the whole-body aerobic fitness was positively correlated with BMI Z score in our study children. Therefore, gender differences in aerobic fitness could have been plausibly negated since boys were undernourished compared to girls. Our study elucidated that FFM, BMI Z scores, and Hb were partial determinants of the estimated levels of whole-body aerobic fitness. FFM being the primary determinant is been well established in earlier studies since it the oxygen demand of the working muscle which determines the rate of consumption.[11,16] BMI Z score had positive effect over and above the FFM on the estimated whole-body aerobic fitness. We could only speculate that an increase in BMI Z scores, reflecting better nutrition, would have changed the muscle fiber type enhancing CRF^[30] since muscle function is an early indicator of nutrition status. However, this needs further studies to substantiate our claim. Higher levels of Hb having a positive effect on aerobic fitness is logical since erythrocytes carry oxygen to the exercising muscle. MVPA is positively associated with aerobic fitness among children^[31] and it was not observed in our study since PAL was estimated using questionnaire, albeit reliable could

not obtain valid reading like accelerometer. Like the previous studies on well-nourished children, lung function parameters and local muscle strength did not show any impact on aerobic fitness.^[11,16]

Low levels of aerobic fitness among these undernourished children could have a negative impact on their physical^[32-34] and mental health^[35,36] and persistence of low CRF into adolescence can have detrimental health effects.^[37] It is, therefore, important to improve aerobic fitness early among these undernourished children. Our primary randomized double-blinded placebo-controlled study suggested that micronutrient supplementation could improve aerobic fitness in this group of children.^[22] Further prospective studies are needed to optimize their aerobic fitness through appropriate macro and micro nutrition support with exercise.

Limitation of the Study

Our study estimated aerobic fitness, body composition, and physical activity rather than direct measurement which is a limitation of the study.

CONCLUSION

The estimated levels of aerobic fitness among the Indian undernourished children were found to be profoundly low. Improvement in nutritional status, as reflected by a higher BMI Z score, can improve aerobic fitness levels among the undernourished children. Nutritional status of the children should be considered while elucidating gender differences in aerobic fitness among children.

ACKNOWLEDGMENT

We would like to acknowledge all the children who participated in the study, their parents, school authorities, and the team of research assistants for their immense support.

REFERENCES

- Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep 1985;100:126-31.
- Anderssen SA, Cooper AR, Riddoch C, Sardinha LB, Harro M, Brage S, et al. Low cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex. Eur J Cardiovasc Prev Rehabil 2007:14:526-31.
- 3. Berchicci M, Pontifex MB, Drollette ES, Pesce C, Hillman CH, Di Russo F. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health. Neuroscience 2015;298:211-9.
- 4. Chaddock-Heyman L, Erickson KI, Chappell MA, Johnson CL, Kienzler C, Knecht A, *et al.* Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Dev

- Cogn Neurosci 2016;20:52-8.
- Nethan S, Sinha D, Mehrotra R. Non communicable disease risk factors and their trends in India. Asian Pac J Cancer Prev 2017;18:2005-10.
- 6. Lejarraga H. Perinatal origin of adult diseases. Arch Argent Pediatr 2019;117:e232-42.
- 7. Heidari-Beni M. Early Life nutrition and non communicable disease. Adv Exp Med Biol 2019;1121:33-40.
- 8. Janz KF, Dawson JD, Mahoney LT. Tracking physical fitness and physical activity from childhood to adolescence: The muscatine study. Med Sci Sports Exerc 2000;32:1250-7.
- 9. Mikkelsson L, Kaprio J, Kautiainen H, Kujala U, Mikkelsson M, Nupponen H. School fitness tests as predictors of adult health-related fitness. Am J Hum Biol 2006;18:342-9.
- 10. Kim Y, White T, Wijndaele K, Westgate K, Sharp SJ, Helge JW, *et al.* The combination of cardiorespiratory fitness and muscle strength, and mortality risk. Eur J Epidemiol 2018;33:953-64.
- Eiberg S, Hasselstrom H, Gronfeldt V, Froberg K, SvenssonJ, Andersen LB. Maximum oxygen uptake and objectively measured physical activity in Danish children 6-7 years of age: The Copenhagen school child intervention study. Br J Sports Med 2005;39:725-30.
- 12. Ohtake PJ. Field tests of aerobic capacity for children and older adults. Cardiopulm Phys Ther J 2005;16:5-11.
- 13. Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci 1988;6:93-101.
- Arsa G, Lanza FC, Cambri LT, Antonio EL, Murad N, de Mello MT, et al. Predicted equation for VO2 based on a 20-meter multistage shuttle run test for children. Int J Sports Med 2018;39:1049-54.
- 15. Lintu N, Savonen K, Viitasalo A, Tompuri T, Paananen J, Tarvainen MP, *et al.* Determinants of cardiorespiratory fitness in a population sample of girls and boys aged 6 to 8 years. J Phys Act Health 2016;13:1149-55.
- Dencker M, Thorsson O, Karlsson MK, Linden C, Eiberg S, Wollmer P, et al. Gender differences and determinants of aerobic fitness in children aged 8-11 years. Eur J Appl Physiol 2007;99:19-26.
- 17. Growth Reference 5-19 Years; 2009. Available from: http://www.who.int/growthref/tools/en. [Last accessed on 2016 Jun 15].
- 18. Kumar N, Shekhar C, Kumar P, Kundu AS. Kuppuswamy's socioeconomic status scale-updating for 2007. Indian J Pediatr 2007;74:1131-2.
- 19. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, *et al.* Skinfold equations for estimation of body fatness in children and youth. Hum Biol 1988;60:709-23.
- Swaminathan S, Selvam S, Thomas T, Kurpad AV, Vaz M. Longitudinal trends in physical activity patterns in selected urban South Indian school children. Indian J Med Res 2011;134:174-80.
- 21. Human energy requirements: Report of a joint FAO/WHO/ UNU expert consultation. Food Nutr Bull 2005;26:166.
- 22. Vaz M, Pauline M, Unni US, Parikh P, Thomas T, Bharathi AV, *et al.* Micronutrient supplementation improves physical performance measures in Asian Indian school-age children. J Nutr 2011;141:2017-23.
- Mei Z, Grummer-Strawn LM. Standard deviation of anthropometric Z-scores as a data quality assessment tool using

- the 2006 WHO growth standards: A cross country analysis. Bull World Health Organ 2007;85:441-8.
- 24. Tomkinson GR, Lang JJ, Blanchard J, Leger LA, Tremblay MS. The 20-m shuttle run: Assessment and interpretation of data in relation to youth aerobic fitness and health. Pediatr Exerc Sci 2019;31:152-63.
- 25. Hayes RM, Maldonado D, Gossett T, Shepherd T, Mehta SP, Flesher SL. Developing and validating a step test of aerobic fitness among elementary school children. Physiother Can 2019;71:187-94.
- 26. De Miguel-Etayo P, Gracia-Marco L, Ortega FB, Intemann T, Foraita R, Lissner L, *et al.* Physical fitness reference standards in European children: The IDEFICS study. Int J Obes (Lond) 2014;38 Suppl 2:S57-66.
- Rowland T, Goff D, Martel L, Ferrone L. Influence of cardiac functional capacity on gender differences in maximal oxygen uptake in children. Chest 2000;117:629-35.
- 28. Vinet A, Mandigout S, Nottin S, Nguyen L, Lecoq AM, Courteix D, *et al.* Influence of body composition, hemoglobin concentration, and cardiac size and function of gender differences in maximal oxygen uptake in prepubertal children. Chest 2003;124:1494-9.
- 29. Winsley RJ, Fulford J, Roberts AC, Welsman JR, Armstrong N. Sex difference in peak oxygen uptake in prepubertal children. J Sci Med Sport 2009;12:647-51.
- Vazquez-Mendoza E, Rodriguez-Torres EE, Lopez-Garcia K, Hinojosa-Rodriguez CX, Jimenez-Estrada I. Differential effect of chronic undernutrition on the fiber type composition of fascicles in the extensor digitorum longus muscles of the rat. Acta Histochem 2017;119:364-71.
- 31. Fang H, Quan M, Zhou T, Sun S, Zhang J, Zhang H, *et al.* Relationship between physical activity and physical fitness in

- preschool children: A cross-sectional study. Biomed Res Int 2017;2017;9314026.
- 32. Aadland E, Anderssen SA, Andersen LB, Resaland GK, Kolle E, Steene-Johannessen J. Aerobic fitness thresholds to define poor cardiometabolic health in children and youth. Scand J Med Sci Sports 2019;29:240-50.
- 33. Melo X, Santa-Clara H, Santos DA, Pimenta NM, Minderico CS, Fernhall B, *et al.* Linking cardiorespiratory fitness classification criteria to early subclinical atherosclerosis in children. Appl Physiol Nutr Metab 2015;40:386-92.
- 34. Agbaje AO, Haapala EA, Lintu N, Viitasalo A, Barker AR, Takken T, *et al.* Peak oxygen uptake cut-points to identify children at increased cardiometabolic risk-the PANIC study. Scand J Med Sci Sports 2019;29:16-24.
- 35. Desai IK, Kurpad AV, Chomitz VR, Thomas T. Aerobic fitness, micronutrient status, and academic achievement in Indian school-aged children. PLoS One 2015;10:e0122487.
- Westfall DR, Kao SC, Scudder MR, Pontifex MB, Hillman CH.
 The association between aerobic fitness and congruency sequence effects in preadolescent children. Brain Cogn 2017;113:85-92.
- 37. Agostinis-Sobrinho C, Ruiz JR, Moreira C, Abreu S, Lopes L, Oliveira-Santos J, *et al.* Cardiorespiratory fitness and blood pressure: A longitudinal analysis. J Pediatr 2018;192:130-5.

How to cite this article: Fernando RJ, Pauline M, Thomas T, Vaz M. Estimation of aerobic fitness levels and its determinants among the school going undernourished Indian children – A field-based study. Natl J Physiol Pharm Pharmacol 2020;10(08):635-640.

Source of Support: Nil, Conflicts of Interest: None declared.